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ABSTRACT

We propose a new theory to quantify information in proba-
bility distributions and derive a new document representa-
tion model for text clustering. By extending Shannon en-
tropy to accommodate a non-linear relation between infor-
mation and uncertainty, the proposed Least Information the-
ory (LIT) provides insight into how terms can be weighted
based on their probability distributions in documents vs. in
the collection. We derive two basic quantities in the doc-
ument clustering context: 1) LI Binary (LIB) which quan-
tifies information due to the observation of a term’s (bi-
nary) occurrence in a document; and 2) LI Frequency (LIF)
which measures information for the observation of a ran-
domly picked term from the document. Both quantities
are computed given term distributions in the document col-
lection as prior knowledge and can be used separately or
combined to represent documents for text clustering. Ex-
periments on four benchmark text collections demonstrate
strong performances of the proposed methods compared to
classic TF*IDF. Particularly, the LIB*LIF weighting scheme,
which combines LIB and LIF, consistently outperforms TF*IDF
in terms of multiple evaluation metrics. The least informa-
tion measure has a potentially broad range of applications
beyond text clustering.

Categories and Subject Descriptors

H.3.1 [Information storage and retrieval]: Content Anal-
ysis and Indexing; H.3.3 [Information storage and re-
trieval]: Information Search and Retrieval—Clustering

General Terms

Theory, Algorithms, Performance, Experimentation
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1. INTRODUCTION
Clustering, or unsupervised classification, is the process

of bringing like entities together [12]. Text clustering is fo-
cused on partitioning unstructured text documents and un-
derlies many applications for information organization and
knowledge management [6]. Document clustering also sup-
ports important processes in text mining and information
retrieval [21, 33].

In text clustering research, TF*IDF has been extensively
used for term weighting and document representation [21,
34]. While term frequency (TF) indicates the degree of a
document’s association with a term, inverse document fre-
quency (IDF) is the manifestation of a term’s specificity,
key to determine the term’s value toward weighting and
relevance ranking [15]. While many clustering algorithms
have been developed, TF*IDF and its variations remain the
de facto standard for term weighting in text clustering [33,
21, 34, 14]. Given strong empirical performances of classic
TF*IDF, limited research has focused on innovation of term
weighting schemes.

Information and probability theories have provided impor-
tant guidance on the development of classic techniques such
as probabilistic and language modeling [27]. Information-
theoretic measures such as mutual information and Kullback-
Leibler (KL) divergence1 have also been used for various
processes including feature selection and matching [18, 33].

The probabilistic retrieval framework provides an impor-
tant theoretical ground to IDF weights [26]. IDF in the form
of − ln ni

N
, where ni is the number of documents containing

term i among N total number of documents, resembles the
entropy formula in Shannon’s information theory. Several
works have attempted to justify IDF from an information-
theoretic view. IDF can be viewed as Kullback-Leibler (KL)
information (relative entropy) between term probability dis-
tributions in a document and in the collection [1].

From an information-centric view, this research aims to
develop a new model for term weighting and document rep-
resentation. By quantifying the amount of information re-
quired to explain probability distribution changes, the pro-
posed least information theory (LIT) establishes a new basic
information quantity and provides insight into how terms
can be weighted based on their probability distributions in
documents vs. in the collection. We derive two basic quanti-

1The literature has used a variety of names in reference to
KL divergence. While Kullback preferred discrimination in-
formation for the principle of minimum discrimination in-
formation (MDI) [17], the literature has often referred to it
as divergence information or relative entropy.



ties, namely LI Binary (LIB) and LI Frequency (LIF), which
can be used separately or combined to represent documents.
We conduct experiments on several benchmark collections
for text clustering to demonstrate the proposed methods’
effectiveness compared to TF*IDF. The major contribution
here is more than another term weighting scheme that is
empirically competitive. More important is the new least
information (LIT) measure that can be used to attack many
other problems related to quantifying semantic amounts of
information.

2. PROPOSED THEORY
In this section, we propose a new theory to quantify mean-

ing of information via extension of Shannon’s entropy equa-
tion. We start with a discussions on issues of existing infor-
mation measures, what to expect about the desired infor-
mation quantity, and introduce the least information theory
(LIT) in which expected characteristics are observed.

2.1 Information Measures and Problems
Shannon entropy measures uncertainty as a property of a

probability distribution whereas the amount of (missing) in-
formation is a function of linear uncertainty reduction [29].
The underlying assumption for this entropy-information re-
lation is that information (always) reduces uncertainty. The
amount of information is determined by a specified proba-
bility distribution regardless of the ultimate outcome [5].
In reality, however, there are many situations in which

information does not necessarily reduce uncertainty – un-
certainty may increase or decrease due to new information.
In addition, the amount of information depends not only on
the overall uncertainty change but also on how individual
probabilities vary. For example, an unlikely event being the
ultimate outcome requires more explanation (information)
than in the case of a very likely event happening.
Different amounts of information are needed to explain

different (and perhaps opposite) outcomes. We reason that,
while uncertainty is a property of a specified probability dis-
tribution, the amount of information required to explain an
outcome and more generally to explain a change in the prob-
ability distribution is interpretation/meaning-dependent and
is more complex than a linear function of uncertainty.
Indeed, using Shannon’s entropy measure to quantify the

amount of meaningful information (with proper interpreta-
tion) is beyond the scope of classic information theory. The
original purpose of Shannon’s theory was for engineering
communication systems where the “meaning of information
was considered irrelevant” [29, p. 379]. As Rapoport (1953)
put it, it is about technical problems that can be treated
independently of the semantic content of messages [25].
Digital libraries technologies such as those related to in-

formation organization and retrieval deal with issues of se-
mantics and relevance, beyond pure engineering problems.
Measuring semantic quantities of information requires inno-
vation on the theory, better clarification of the relationship
between information and entropy, and justification of this
relationship.
While related quantities such as KL information (relative

entropy) offer alternatives to the simplified entropy reduc-
tion view of information, some characteristics of relative en-
tropy do not meet our expectations about such a measure.
Specifically, the asymmetry of the KL function due to the as-

sumption about a benchmark distribution in the evaluation
disqualifies it as a metric [8].

In addition, relative entropies over the course of continu-
ous probability changes in one direction do not add up to
the overall amount. Finally and very important, extreme
probability changes (e.g., when an event changes from being
very unlikely to almost certainty) lead to infinite KL in-
formation, which is a particularly undesirable property for
term weighting. We address these issues in the proprosed
least information theory (LIT) below.

2.2 Least Information Theory (LIT)
In this section, we present the least information theory

(LIT) to quantify meaning (semantics) in probability distri-
bution changes. Here we shall clarify on the definition of
meaning by reusing D. M. MacKay’s terms, in which the
meaning of information is defined as a “selective function on
a range of the recipient’s states of conditional readiness for
goal-directed activity.” [23, p.24] Meaning is a relationship
between information and the recipient rather than a prop-
erty alone. Information is not restricted to the amount in
message transmission but is subject to interpretation [11].
Introduction of information results in changes of readiness
states or belief (as in probabilities). In this view, meaning
can (at least in part) be quantified by what varies in the
beliefs or estimated probabilities of inferences.

Let X be prior (initially specified) probabilities for a set of
exhaustive and mutually exclusive inferences: X = [x1, x2, .., xn],
where xi is the prior probability of the ith inference on a
given hypothesis. Let Y denote posterior (changed) proba-
bilities after certain information is known: Y = [y1, y2, .., yn],
where yi is the informed probability of the ith inference. Un-
certainties/entropies of the two distributions can be com-
puted by Shannon entropy:

H(X) = −k
n
∑

i=1

xi lnxi (1)

H(Y ) = −k
n
∑

i=1

yi ln yi (2)

The amount of information obtained from X to Y , in
Shannon’s treatment, can be measured via the reduction
of entropy:

∆H = H(X)−H(Y ) (3)

The inferences are exclusive and involve different mean-
ings. When probabilities X to Y are not identical, the
two distributions are semantically different and it is obvi-
ous that some amount of information is responsible for the
variance. We can examine the amount of information as-
sociated with individual inferences via the measurement of
uncertainty change. With Equation 3, however, it is easy to
show that when there are changes in the probabilities, there
may be increases, decreases, or no change in the overall un-
certainty. We observe that even when there is no change in
the entropy, there is still an amount of information respon-
sible for any variance in the probability distribution. To
use the overall (system-wide) uncertainty for the measure-
ment of information ignores semantic relevance of changes
in individual inferences.



Here our new least information model departs from the
classic measure of information as reduction of uncertainty
(entropy). First, we reason that any change in the uncer-
tainty of an inference, either an increase or decrease, re-
quires a relevant amount of information that is responsible
for it. The overall information needed to explain changes in
all inference probabilities is the sum of individual pieces of
information associated with each inference.
Second, for an individual inference i, the probability may

vary in one of the two semantic directions, i.e., to increase
or to decrease the likelihood. In either case, there is always
a (positive) amount of information responsible for that vari-
ance. If we assume inferences are semantically independent2,
the absolute values of these independent pieces of informa-
tion add linearly to the overall amount of information.
In addition, it is reasonable for such an information quan-

tity to meet the condition that continuous, smaller changes
in one direction add incrementally to a bigger change in the
same direction. That is, pieces of information responsible
for small, continuous changes of an inference probability in
the same direction should add up to the amount of informa-
tion for the overall change. For example, if the ith inference’s
probability increases from xi to yi and then to zi, the (least)
amount of information required for the change from xi to yi
and the amount from yi to zi should add up to the overall
(least) information required for the change from xi to zi.
We define dHi as the amount of entropy change due to a

tiny change dpi of probability pi:

dHi = − ln pidpi (4)

In the configuration view of entropy, this microscopic vari-
ance of entropy due to a small change in an inference’s prob-
ability is the change of the weighted (pi) number of configu-
rations (ln 1

pi
) [10, 5]. In other words, it is the change in the

number of configurations (ln 1

pi
) due to a varied probability

weight (pi).
Every tiny change in the probabilities requires some expla-

nation (information). Aggregating (integrating) the small
changes of uncertainty leads to the amount of information
required for a macro-level change. A macroscopic uncer-
tainty change due to a significant probability shift of an
inference is the sum (integration) of continuous microscopic
changes in the variance range. Therefore, we define the least
amount of information Ii required to explain the probability
change of the ith inference as the integration (aggregation)
of all tiny absolute (positive) changes of entropy dHi:

Ii =
∣

∣

∣

∫ yi

xi

dHi

∣

∣

∣

=
∣

∣

∣

∫ yi

xi

− ln pidpi

∣

∣

∣

=
∣

∣

∣
pi(1− ln pi)

∣

∣

∣

yi

xi

(5)

=
∣

∣

∣
yi(1− ln yi)− xi(1− lnxi)

∣

∣

∣
(6)

2Inference probabilities are never perfectly independent of
one another given the degree of freedom. But to simplify
the discussion and formulation, we use the independence
assumption.

where xi is the initial probability of the ith inference and
yi the posterior probability of the same inference. We de-
fine informative entropy gi as a function of an inference’s
probability:

gi = pi(1− ln pi) (7)

The equation for least information Ii for the ith inference
in Equation 6 can be rewritten as:

Ii =
∣

∣

∣
g(yi)− g(xi)

∣

∣

∣
(8)

The total Least Information I is the sum of partial least
information for every inference:

I =
n
∑

i=1

Ii

=
n
∑

i=1

∣

∣

∣
g(yi)− g(xi)

∣

∣

∣

=
n
∑

i=1

∣

∣

∣
yi(1− ln yi)− xi(1− lnxi)

∣

∣

∣
(9)

where n is the number of inferences, xi is the initially
specified probability of the ith inference, and yi the revised
probability of the ith inference.

2.3 Important Model Characteristics
It is worth noting that Equation 9 is to measure the least

amount of information required to explain a probability dis-
tribution change for a set of inferences. Here is why we
include the word least in the nomenclature. Given that in-
formation may alter a probability distribution in various se-
mantic directions and change the uncertainty in both posi-
tive and negative directions, the actual amount of informa-
tion leading to such a change may consist of multiple pieces
of information acting in different directions.

Without an exhaustive analysis of the process, the actual
amount of information cannot be deduced solely from an in-
vestigation of probability distributions. It is only reasonable
to quantify the least information needed for that change –
that is, the sum of all needed amounts of information at the
very least, every tiny piece of which contributes in the same
direction of a change. In addition, this model does not con-
sider the process of removing information, which, in effect,
is equivalent to adding another piece of information that has
perfectly opposite semantics3 in the same amount.

Based on Equation 9, several important characteristics of
least information can be observed. Figure 1 compares the
least information measure with entropy reduction and rela-
tive entropy in a two-exclusive-inference case. We summa-
rize some of these characteristics below.

• Absolute information and symmetry: The amount of
least information required for a probability change from
X to Y is the same as that from Y to X, though their
semantic meanings are different.

3The term opposite does not indicate true vs. false infor-
mation. Opposite information semantics are essentially to
increase vs. to decrease the probability of an inference, e.g.,
good news vs. bad news about a candidate that may influ-
ence the outcome of an election.
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Figure 1: Least Information vs. Entropy: Reduc-
ing two exclusive uncertain inferences to certainty.
X denotes P1 which is the probability for 1st infer-
ence of 2 mutually exclusive. Y denotes the amount
of information (I) in terms of each measure. The
1st inference is assumed to be the ultimate outcome
in the figure. The asymmetry of least information in
the plot is a manifestation of its dependence on the
outcome. Compare to Fig. 7 in Shannon (1948).

• Addition of continuous change: Amounts of least infor-
mation for small, continuous probability changes in the
same semantic directions add linearly to the amount
of least information responsible for the overall change.
In short, I(X → Z) = I(X → Y ) + I(Y → Z), if and
only if X → Y and Y → Z are in the same semantic
direction.

• Unit Information: In the special case when there are
two equally possible inferences, the amount of least
information needed to explain an outcome (certainty)
is one: I(p1 = p2 = 1

2
→ p1 = 1) = 1, regardless of

the log base in the equation (see data point ( 1
2
, 1) in

Figure 1).

• In the special case of reducing uncertain inferences to
certainty (with the ultimate case):

– With equally likely inferences, when there are more
choices, the least information needed to explain
an outcome is larger.

– The less likely the outcome, the larger the amount
of least information needed to explain it.

• Zero least information: The amount of least informa-
tion is zero if and only if there is no change in the
probability distribution (identical distributions).

2.4 Least Information for Term Weighting
Now we apply the proposed least information theory to

term weighting and document representation. A text docu-
ment can be viewed as a set of terms with probabilities (es-
timated by frequencies) of occurrence. We conjecture that
the larger amount least information is needed to explain a
term’s probability in a document (vs. in the collection), the
more heavily the term should be weighted to represent the
document [2]. Hence, we transform the question of docu-
ment representation to weighting terms according to their
amounts of least information in documents.
In this study, we propose two specific weighting methods,

one based on a binary representation of term occurrence

(0 vs. 1) and the other based on term frequencies. These
two methods will be used separately and combined in fu-
sion methods as well. We use maximum likelihood estimates
(MLE) to get term probabilities based on observed data [24].

2.4.1 LI Binary (LIB) Model

In the binary model, a term either occurs or does not oc-
cur in a document. If we randomly pick a document from
the collection, the chance that a term ti appears in the doc-
ument can be estimated by the ratio between the number
of documents containing the term ni (i.e., document fre-
quency) and the total number of documents N using MLE.
Let p(ti|C) = ni/N denote the probability of term ti occur-
ring in a randomly picked document in collection C; p(t̄i|C)
is the probability that the term does not appear:

p(t̄i|C) = 1− p(ti|C) = 1− ni/N

When a specific document d is observed, it becomes cer-
tain whether a term occurs in the document or not. Hence
the term probability given a specific document p(ti|d) is ei-
ther 1 or 0. Given the definition of gi in Equation 7, the least
amount of information in term ti from observing document
d can be computed by:

I(ti, d) =
∣

∣

∣
g(ti|d)− g(ti|C)

∣

∣

∣

+
∣

∣

∣
g(t̄i|d)− g(t̄i|C)

∣

∣

∣
(10)

The above equation gives the amount of information a
term conveys in a document regardless of its semantic direc-
tion. When a query term ti does not appear in document
d, the least information associated with the term should be
treated as negative because it makes the document less rel-
evant to the term. Hence, the ranking function should not
only consider the amount of information but also the sign
(positive vs. negative) of the quantity. Hence, LI Binary
(LIB) can be computed by:

LIB2(ti, d) = g(ti|d)− g(ti|C)

−g(t̄i|d) + g(t̄i|C) (11)

For term weighting, we are more interested in the like-
lihood of a term appearing in a document. Keeping only
quantities related to ti (and removing those associated with
t̄i), we simplify the LIB equation to:

LIB(ti, d) = g(ti|d)− g(ti|C) (12)

= g(ti|d)−
ni

N

(

1− ln
ni

N

)

(13)

The quantity depends on the observation of term ti in the
document: g(ti|d) is 1 when ti appears in document d and
0 if otherwise, according to Equation 7. That is:

LIB(ti, d) =







1− ni

N

(

1− ln ni

N

)

ti ∈ d

−ni

N

(

1− ln ni

N

)

ti 6∈ d
(14)

where ni is the document frequency of term ti and N is
the total number of documents. The larger the LIB, the
more information the term contributes to the document and



should be weighted more heavily in the document represen-
tation. LIB is similar in spirit to IDF and its value represents
the discriminative power of the term when it appears in a
document.

2.4.2 LI Frequency (LIF) Model

In the LI Frequency (LIF) model, we use term frequencies
to model least information. Treating a document collection
C as a meta-document, the probability of a term randomly
picked from the collection being a specific term ti can be
estimated by: p(ti|C) = Fi/L, where Fi is the total number
of occurrences of term ti in collection C and L the overall
length of C (i.e., the sum of all document lengths).
When a specific document d is observed, the probability

of picking term ti from this document can be estimated by:
p(ti|d) = tfi,d/Ld, where tfi,d is the number of times term ti
occurs in document d and Ld is the length of the document.
Again, for each term ti, there are two exclusive inferences,
namely the randomly picked term being the specific term (ti)
or not (t̄i). To quantify a term’s LIF weight, we measure
least information that explains the change from the term’s
probability distribution in the collection to its distribution
in the document in question:

LIF2(ti, d) = g(ti|d)− g(ti|C)

+g(t̄i|C)− g(t̄i|d) (15)

We focus on the quantities g(ti|d) and g(ti|C) to estimate
least information of each term when a specific document is
observed. Without quantities g(t̄i|C) and g(t̄i|d), the LIF
equation is simplified to:

LIF (ti, d) = g(ti|d)− g(ti|C) (16)

=
tfi,d
Ld

(1− ln
tfi,d
Ld

)

−
Fi

L
(1− ln

Fi

L
) (17)

where tfi,d is term frequency of term ti in document d and
Ld is the document length. Fi is collection frequency of term
ti (the sum of term frequencies in all documents) whereas L
is the overall length of all documents. In a sense, LIF can be
seen as a new approach to modeling term frequencies with
document length and collection frequency normalization. In
this study, we use raw term frequencies with MLE to esti-
mate probabilities and do not use any smoothing techniques
to fine tune the estimates.

2.4.3 Fusion of LIB & LIF

While LIB uses binary term occurrence to estimate least
information a document carries in the term, LIF measures
the amount of least information based on term frequency.
The two are related quantities with different focuses. As
discussed, the LIB quantity is similar in spirit to IDF (in-
verse document frequency) whereas LIF can be seen as a
means to normalize TF (term frequency).
In light of TF*IDF, we reason that combining the two

will potentiate each quantity’s strength for term weighting.
Hence we propose three fusion methods to combine the two
quantities by addition and multiplication:

1. LIB+LIF: To weight a term, we simply add LIB and
LIF together by treating them as two separate pieces
of information.

2. LIB*LIF: In this fusion method, we follow the idea
of TF*IDF by multiplying LIB and LIF quantities for
each term. Because a least information quantity falls
in the range of [−1, 1] and can be a negative value, we
normalize LIB and LIF values to [0, 2] by adding 1 to
each before multiplication.

3. LIB*TF: This method multiplies the LIB quantity by
a document length normalized TF (term frequency),
similar to the above LIB*LIF method.

These fusion methods allow us to examine potential strengths
and weaknesses of the proposed least information term weights
for clustering. We study LIB and LIF as well as the above
fusion methods in experiments. And given the extensive use
of TF*IDF in text clustering research, we use it for compar-
ison in the study.

3. EXPERIMENTAL SETUP

3.1 Data Collections
Several benchmark collections were used in the study to

evaluate the effectiveness of proposed term weighting meth-
ods for text clustering. Some of these collections, including
the WebKB 4 universities data, the 20 Newsgroups collec-
tion, and the RCV1 Reuters corpus, had been widely used
for text clustering and classification research. The New York
Times annotated corpus was a relatively new development
and had not been extensively adopted for clustering experi-
ments.

• WebKB 4 Universities Data (WebKB): This data set
contains 8, 282 web pages collected in 1997 from com-
puter science departments of various universities, which
were manually categorized into seven categories such
as student, faculty, and department. This was devel-
oped by the WebKB project at CMU [9].

• 20 Newsgroups (20News): The collection contains 20, 000
messages from 20 news groups (categories) [19]. The
messages were randomly picked to distribute evenly
among the categories. We used a revised version which
retained 18, 828 messages after duplicate removal. We
used all 20 categories as gold standard labels.

• Reuters Corpus Volume 1 (RCV1-v2): The RCV1 col-
lection contains 804, 414 newswire stories made avail-
able by Reuters. RCV1-v2 is a corrected version of
the original collection, in which documents were man-
ually assigned to a hierarchy of 103 categories [20].
There are four top-level categories (under the hierar-
chical root), which we used as labels for evaluation.

• New York Times Annotated Corpus (NYTimes): The
NYTimes corpus contains more than 1.8 million arti-
cles in New York Times from 1987 - 2007 [28]. The
corpus is very rich in human annotation such as sum-
maries and subject descriptors. For each year, we
identified articles assigned to one and only one taxo-
nomic classifier and used the third-level categories un-
der top/news/ (e.g., top/news/science and top/news/business)



as labels. After several categories such as corrections
were removed, the final data set contained 179, 175
documents in 15 categories.

3.2 System Settings
We developed an experimental clustering system based

on the Weka data mining framework [32]. We implemented
various document representation methods including the pro-
posed term weighting schemes and TF*IDF based on a Weka
vectorization filter. Existing implementations in the frame-
work for k-means clustering [3] and hierarchical agglomera-
tive clustering (HAC) were reused in experiments [35]. We
tokenized documents into single words, removed stop-words,
and normalized terms using an iterated Lovins stemmer [22].
A number of most frequent words were selected as features
(DF thresholding); 1, 000 features were used in main exper-
iments. We varied the number of features in experiments to
study the influence of feature selection. All documents were
normalized to unit vectors.
In k-means clustering, we used the euclidean distance and

set the maximum number of iterations to 200. We conducted
30 runs of k-means for each experimental setting, in which
clustering was performed on a random sample of 2, 000 doc-
uments. The HAC clustering used complete link and angle
distance (based on an arc cosine function). For each exper-
imental setting, HAC was performed on a random sample
of 1, 000 documents for 20 runs. We set the number of de-
sired clusters to the number of classes/labels in each data
collection.

3.3 Evaluation Metrics
Using categorical labels available in data as the gold stan-

dard, we evaluated clustering results based on several classic
metrics, namely, purity, rand index, precision, recall, and F1.
By assigning each cluster to the most frequent class (label)
in it, we can compute purity by:

purity(C,L) =
1

N

∑

i

max
j

|ci ∩ lj | (18)

where N is the total number of documents. C is the set
of clusters and ci is the ith cluster. L is the set of labels
(classes) where lj is the jth label.
Computing the other metrics such as rand index is by

viewing document clustering as a series of decision making
[24]. Given the following table which summarizes the num-
bers of correctly and incorrectly clustered document pairs:

Table 1: Decision table of clustering

System⇒
Labels⇓

Same Cluster Diff Clusters

Same Class TP: True Positive FN: False Negative
Diff Classes FP: False Positive TN: True Negative

Rand Index measures the ratio of correct decisions and is
computed by:

RI =
TP + TN

TP + FP + FN + TN
(19)

Likewise, precision, recall, and F1 can by computed by:

P = TP/(TP + FP ) (20)

R = TP/(TP + FN) (21)

F1 = 2 ∗ P ∗R/(P +R) (22)

Whereas rand index measures clustering accuracy by tak-
ing into account both true positive and true negative, classic
IR evaluation metrics such as precision and recall emphasize
the ability to find relevant answers/pairs (true positive). Pu-
rity and precision are similar in that they both focus on the
internal accuracy within each cluster. Recall, on the other
hand, addresses the effectiveness of having as many relevant
document pairs as possible in one cluster. With these var-
ious metrics, we were able to examine strengths and weak-
nesses of the proposed methods in multiple perspectives.

4. RESULTS
In each set of experiments presented here, best scores in

each metric are highlighted in bold whereas italic values
are those better than TF*IDF baseline scores. A significant
better result according to t-test at 0.05 is shown with an as-
terisk (∗). We first present results using k-means clustering
with various weighting schemes and with 1, 000 features in
sections 4.1 - 4.4. Analysis of the impact of feature selection
on clustering effectiveness in section 4.5 will show overall
best results were obtained with 1, 000 features in WebKB,
20News, and RCV1 collections. We discuss hierarchical ag-
glomerative clustering (HAC) results in section 4.6.

4.1 WebKB 4 Universities Data
Table 2 shows k-means clustering results on the WebKB 4

Universities data set. The proposed methods LIB, LIB+LIF,
and LIB*LIF all outperformed TF*IDF in terms of purity,
rand index, and precision. LIF and LIB*TF, which have an
emphasis on term frequency, achieved significantly better
recall scores.

Table 2: WebKB with k-means clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.504 0.655 0.343 0.245 0.283
LIB 0.520∗ 0.686∗ 0.383∗ 0.215 0.275
LIF 0.455 0.600 0.282 0.277∗ 0.276
LIB*TF 0.459 0.571 0.273 0.323∗ 0.292
LIB+LIF 0.517∗ 0.680∗ 0.377∗ 0.214 0.272
LIB*LIF 0.524∗ 0.681∗ 0.376∗ 0.208 0.268

4.2 20 Newsgroups Data
K-means clustering with the 20 Newsgroups data, as shown

in Table 3, presents a slightly different picture. While best
scores were achieved among the proposed methods, LIF ap-
peared to have produced most of the best scores, with pu-
rity, precision, and F1 scores significantly higher than those
of TF*IDF. Overall, k-means was not very effective in terms
of within-cluster accuracy (purity and precision).

4.3 RCV1 Reuters Corpus
K-means clustering experiments on the RCV1 corpus showed

a pattern quite similar to WebKB results. As shown in



Table 3: 20 Newsgroup with k-means clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.229 0.771 0.0973 0.350 0.145
LIB 0.241 0.832 0.111∗ 0.286 0.154
LIF 0.269∗ 0.816 0.117∗ 0.372 0.173∗
LIB*TF 0.174 0.631 0.0757 0.489∗ 0.126
LIB+LIF 0.231 0.732 0.106 0.408 0.155
LIB*LIF 0.214 0.793 0.0957 0.309 0.137

Table 4, the proposed methods outperformed TF*IDF in
terms of multiple metrics. Compared to TF*IDF, LIB*LIF,
LIB+LIF, and LIB performed significantly better in purity,
rand index, and precision whereas LIF and LIB*TF achieved
significantly better scores in recall.

Table 4: RCV1 with k-means clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.699 0.678 0.511 0.576 0.531
LIB 0.733∗ 0.711∗ 0.543 0.538 0.539
LIF 0.719 0.699 0.546 0.663∗ 0.588∗
LIB*TF 0.650 0.637 0.468 0.670∗ 0.542
LIB+LIF 0.725 0.711∗ 0.544 0.554 0.547
LIB*LIF 0.741∗ 0.713∗ 0.549∗ 0.531 0.539

4.4 New York Times Collection
With the NY Times corpus, LIB*LIF continued to dom-

inate best scores and performed significantly better than
TF*IDF in terms of purity, rand index, and precision (Ta-
ble 5). This is very consistent with WebKB and RCV1 re-
sults. While LIB and LIB+LIF did well in terms of rand
index, LIF and LIB*TF were competitive in recall.

Table 5: NYTimes with k-means Clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.825 0.632 0.683 0.383 0.456
LIB 0.819 0.634 0.691 0.399∗ 0.469
LIF 0.807 0.627 0.662 0.433∗ 0.481∗
LIB*TF 0.813 0.622 0.672 0.435∗ 0.473∗
LIB+LIF 0.829 0.640 0.700 0.405∗ 0.476∗
LIB*LIF 0.837∗ 0.647∗ 0.719∗ 0.391 0.472∗

Overall, LIB*LIF had a strong performance across the
data collections. Methods with the LIB quantity, especially
LIB, LIB+LIF, and LIB*LIF, were effective when the eval-
uation emphasis was on within-cluster (internal) accuracy,
e.g., in terms of purity and precision. Similar to IDF, LIB
was designed to weight terms according to their discrimi-
native powers or specificity in terms of Sparck Jones [15].
Hence, it helped improve precision-oriented effectiveness.
The other methods such as LIF and LIB*TF emphasize term
frequency in each document and, with the ability to associate
one document to another by assigning term weights in a less
discriminative manner, were able to achieve better recalls.

4.5 Impact of Feature Selection
Now we look at the impact of feature selection on the

effectiveness of document representation for clustering. In
this work, we selected features based on their frequencies in
the collection (DF thresholding), which was computation-
ally simple and had been found in several studies to be a
very effective feature selection technique for clustering and
categorization [21, 33, 34]. We varied the number of features
Nf in each set of experiments, for which the top Nf most
frequent terms were kept for document representation. We
performed this experimental analysis on three collections,
namely, WebKB, 20Newsgroup, and RCV1.
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Figure 2: WebKB: Impact of feature selection. X
denotes # of features and is log-transformed. Y is
the metric score.

Figure 2 shows the influence of the number of selected fea-
tures on clustering effectiveness with the WebKB data. Note
that the X axis is logarithmic and the number of features
Nf decreases from left to right. Recall appears to decrease
when Nf decreases because less common features lead to
ineffective identification of related documents (smaller true
positive) and a larger number of false negative (larger false
negative).

In terms of purity, rand index, and precision, there exists
an inflection point around Nf = 1000, where optimal clus-
tering results were achieved. With a large feature space (e.g.,
with 30, 000 features for WebKB), unrelated documents were
likely to be grouped together because of irrelevant common
terms, leading to a large number of false positive (hence
lower precision). Some degree of feature removal reduced
the amount of noise in the feature space and improved clus-
tering effectiveness. It was shown in research that using
various feature selection methods to eliminate up to 90% of
term features resulted in either no loss or improvement of
clustering and categorization accuracy [21, 33]. Further fea-
ture reduction from the inflection point degraded clustering
performance when there were insufficient features for accu-
rate document representation. As shown in Figures 3 and



4, similar patterns about the influence of feature selection
were found with 20Newsgroup and RCV1 data.
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Figure 3: 20Newsgroup: Impact of feature selection

Interestingly, dramatically reducing the number of fea-
tures from the inflection point only degraded rand index to
a certain degree. We suspect that with an extremely small
number of features to represent a large, diverse collection,
clustering did not perform effectively. Having a good rand
index score with only 10 features, for example in Figure 3 on
the 20 Newsgroups data, is against our intuition about the
situation. This raises questions about the effectiveness of
rand index in evaluating clustering results and the circum-
stances under which true negative should or should not be
considered.

4.6 HAC Clustering Results
The main experiments above were conducted using k-

means clustering. In this section we present results from
hierarchical agglomerative clustering (HAC) using complete
link and an arc cosine distance function. From Tables 6, 7,
8, and 9, we have found results consistent with those from
k-means clustering.

Table 6: WebKB with hierarchical clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.459 0.623 0.283 0.235 0.253
LIB 0.464 0.628 0.295 0.233 0.259
LIF 0.453 0.484 0.239 0.391∗ 0.296∗
LIB*TF 0.452 0.623 0.275 0.223 0.244
LIB+LIF 0.473∗ 0.641 0.308∗ 0.228 0.261
LIB*LIF 0.485∗ 0.633 0.301∗ 0.226 0.257

With WebKB and 20 Newsgroups data (shown in Tables 6
and 7), for example, LIB+LIF and LIB*LIF continued to
perform competitively in terms of within-cluster accuracy
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Figure 4: RCV1: Impact of feature selection

Table 7: 20 Newsgroup with hierarchical clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.192 0.584 0.0582 0.475 0.103
LIB 0.183 0.614 0.0575 0.429 0.101
LIF 0.240∗ 0.891∗ 0.0987∗ 0.142 0.116∗
LIB*TF 0.172 0.568 0.0567 0.483 0.101
LIB+LIF 0.232∗ 0.886∗ 0.0988∗ 0.154 0.120∗
LIB*LIF 0.224∗ 0.892∗ 0.096∗ 0.134 0.111∗

metrics such as purity and precision. LIF achieved better
recall and F1 than TF*IDF did on WebKB (Table 6).

Table 8: RCV1 with hierarchical clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.448 0.357 0.312 0.865 0.458
LIB 0.477∗ 0.384∗ 0.324∗ 0.864 0.470∗
LIF 0.542∗ 0.622∗ 0.398∗ 0.391 0.392
LIB*TF 0.464∗ 0.370 0.319∗ 0.875 0.467∗
LIB+LIF 0.489∗ 0.399∗ 0.325∗ 0.829 0.466
LIB*LIF 0.492∗ 0.399∗ 0.322∗ 0.804 0.458

With 20 Newsgroups, RCV1, and NYTimes data, LIF
consistently outperformed TF*IDF in multiple metrics (see
Tables 7, 8, and 9). With the RCV1 corpus, all proposed
methods produced significantly higher scores in purity, rand
index, and precision than TF*IDF did.

5. DISCUSSION AND RELATED WORK
In the various experiments presented here, the proposed

term weighting methods based on least information mod-
eling performed very strongly compared to TF*IDF. In all
experiments on the four benchmark collections, top perfor-



Table 9: NYTimes with hierarchical Clustering

Method Purity RIndex Prec. Recall F1

TF*IDF 0.840 0.709 0.785 0.511 0.586
LIB 0.840 0.693 0.777 0.489 0.564
LIF 0.867∗ 0.741∗ 0.845∗ 0.501 0.616∗
LIB*TF 0.839 0.699 0.788 0.483 0.567
LIB+LIF 0.844 0.700 0.787 0.490 0.570
LIB*LIF 0.839 0.728∗ 0.780 0.544∗ 0.617∗

mance scores were achieved among the proposed methods.
Whereas LIF well supported recall, LIB*LIF was overall
the best method in the experiments and consistently out-
performed TF*IDF by a significant margin, particularly in
terms of purity, precision, and rand index. Although de-
tailed results varied, the general observations from k-means
clustering and hierarchical clustering were consistent.
Experiments showed that methods with the LIB quan-

tity were more effective in terms of within-cluster accuracy
(e.g., precision and purity). By emphasizing the discrimi-
native power (specificity) of a term, LIB reduces weights of
terms commonly shared by unrelated documents, leading to
fewer of these documents being grouped together (smaller
false positive and higher precision). LIF, on the other hand,
helped to boost recall with the integration of term frequency.
The different strengths of LIB and LIF indicate that they
can be combined or used separately to serve various cluster-
ing purposes.
An additional interesting finding in this study is the in-

flection point in the clustering performance vs. # features
plots. In various data and experimental settings, optimal
clustering performance was achieved with 1000 features (se-
lected by DF thresholding). Increasing or decreasing the
number of features from the inflection point degraded clus-
tering effectiveness in terms of purity, rand index, and preci-
sion. While similar patterns were observed in text clustering
and categorization research, further investigation is needed
to understand factors related to this phenomenon.

5.1 Related Models
The LIB*LIF scheme is similar in spirit to TF*IDF. By

modeling (binary) term occurrences in a document vs. in
any random document from the collection, LIB integrates
the document frequency (DF) component in the quantity.
LIF, on the other hand, models term frequency/probability
distributions and can be seen as a new approach to TF nor-
malization. Despite the similarity, our experiments showed
LIB*LIF, based on the new least information formulation,
were more effective than TF*IDF for document representa-
tion in the text clustering context. Least information mod-
eling can be applied to other important processes such as in-
formation retrieval ranking, for which TF*IDF and its BM25
variation have produced strong empirical results.
Several works have attempted to justify clasic IDF from

an information-theoretic view but have not established a
direct, concrete connection [26]. Further development of no-
tions around information-theoretic entropy led to findings
such as maximum entropy and minimum (mutual) informa-
tion principles, providing important guidance to inferential
statistics for retrieval and evaluation [13, 31, 16, 4].

It has been shown that a term’s IDF is the mutual infor-
mation between the term and the document collection [30].
Mutual information is an application of relative entropy (KL
divergence) that quantifies the difference between the joint
probabilities and product probabilities of two random vari-
ables [8]. In the light of language modeling, IDF is equiva-
lent to Kullback-Leibler (KL) divergence (relative entropy)
between term probability distribution in a document and in
the entire collection [1, 18].

KL divergence (relative entropy) measures discrimination
information between two probability distributions by quan-
tifying the entropy change in an asymmetric manner [18].
The asymmetry of KL divergence is due to the fact that
it works in a directed manner to quantify bits needed to
code samples of one distribution based on another. The
proposed least information theory (LIT) offers a symmetric
function and can be used as a distance measure. In addition,
whereas KL is infinite given extreme probabilities (e.g., for
rare terms), the amount of least information is bounded by
the number of inferences.

5.2 Novelty and Significance
The least information theory is a new extension of Shan-

non entropy based on integration of micro uncertainty changes
over a shifted probability distribution. LIB and LIF repre-
sent our initial attempt to apply LIT in modeling docu-
ment representation for text clustering, which offers promis-
ing baseline results. The presented models may be further
improved, for example, by integrating various randomness
models and probability estimators such as those in [2]. LIT
provides a new information quantity with which more so-
phisticated models can be proposed. Its implications will be
beyond text clustering.

While the LIB and LIF models bear some resemblance
to existing approaches such as divergence from randomness
in [2] and information-based models in [7], the LIT formu-
lation is fundamentally different. It is true that the com-
mon idea is to weight terms by measuring information they
contribute, relative to signals in the collection/randomness.
The key lies in how information is measured. LIT quanti-
fies variances in p(1 − ln p), where p denotes the probabil-
ity of an inference (e.g., that a term appears). Although
this can be related to classic quantities such as − ln p (IDF-
related), −p ln p (entropy-related), and p ln p/q (KL-related)
commonly used in the literature, least information is not an
arbitrary combination of existing quantities but a deriva-
tion based on close examination of expected characteristics.
To our knowledge, no existing information theory or mod-
els share the major characteristics (see section 2.3) of the
presented least information quantity (in equation 9).

6. CONCLUSION
We presented the least information theory (LIT), which

quantifies information in varied probability distributions.
We observed several important characteristics of the pro-
posed information quantity. Two basic quantities were de-
rived from the theory for term weighting and document rep-
resentation, which we used separately and combined in fu-
sion methods for document clustering.

Research was conducted to evaluate the effectiveness of
proposed methods compared to TF*IDF, which had been
extensively used in text clustering research. Experiments
on several benchmark collections showed very strong per-



formances of LIT-based term weighting schemes. In most
experiments, the proposed methods, especially LIB*LIF fu-
sion, significantly outperformed TF*IDF in terms of several
evaluation metrics.
While we have demonstrated superior effectiveness of the

proposed methods, the main contribution is not about im-
provement over TF*IDF. Of greater significance is the new
approach to information measurement and term weighting
based on the least information theory (LIT), which enables
a different way of thinking and provides a new information
measure for modeling various information processes.
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